A Different Approach to Bounding the Minimal Residual Norm in Krylov Methods

نویسنده

  • ILSE C. F. IPSEN
چکیده

In the context of Krylov methods for solving systems of linear equations, expressions and bounds are derived for the norm of the minimal residual, like the one produced by GMRES or MINRES. It is shown that the minimal residual norm is large as long as the Krylov basis is well-conditioned. In the context of non-normal matrices, examples are given where the minimal residual norm is a function of the departure of the matrix from normality, and where the decrease of the residual norm depends on how large the departure from normality is compared to the eigenvalues. With regard to normal matrices, the Krylov matrix is unitarily equivalent to a row-scaled Vandermonde matrix and the minimal residual norm in iteration i is proportional to a product of i relative eigenvalue separations. Arguments are given for why normal matrices with complex eigenvalues can produce larger residual norms than Hermitian matrices, and why indeenite matrices can produce larger residual norms than deenite matrices.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Preconditioned Generalized Minimal Residual Method for Solving Fractional Advection-Diffusion Equation

Introduction Fractional differential equations (FDEs)  have  attracted much attention and have been widely used in the fields of finance, physics, image processing, and biology, etc. It is not always possible to find an analytical solution for such equations. The approximate solution or numerical scheme  may be a good approach, particularly, the schemes in numerical linear algebra for solving ...

متن کامل

Solving large systems arising from fractional models by preconditioned methods

This study develops and analyzes preconditioned Krylov subspace methods to solve linear systems arising from discretization of the time-independent space-fractional models. First, we apply shifted Grunwald formulas to obtain a stable finite difference approximation to fractional advection-diffusion equations. Then, we employee two preconditioned iterative methods, namely, the preconditioned gen...

متن کامل

Expressions and Bounds for the Gmres Residual

Expressions and bounds are derived for the residual norm in GMRES. It is shown that the minimal residual norm is large as long as the Krylov basis is well-conditioned. For scaled Jordan blocks the minimal residual norm is expressed in terms of eigenvalues and departure from normality. For normal matrices the minimal residual norm is expressed in terms of products of relative eigenvalue di erences.

متن کامل

Residual Smoothing and Peak/plateau Behavior in Krylov Subspace Methods

Recent results on residual smoothing are reviewed, and it is observed that certain of these are equivalent to results obtained by different means that relate “peaks” and “plateaus” in residual norm sequences produced by certain pairs of Krylov subspace methods.

متن کامل

Residual and Backward Error Bounds in Minimum Residual Krylov Subspace Methods

Minimum residual norm iterative methods for solving linear systems Ax = b can be viewed as, and are often implemented as, sequences of least squares problems involving Krylov subspaces of increasing dimensions. The minimum residual method (MINRES) [C. Paige and M. Saunders, SIAM J. Numer. Anal., 12 (1975), pp. 617–629] and generalized minimum residual method (GMRES) [Y. Saad and M. Schultz, SIA...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998